Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metal-organic frameworks (MOFs) with tunable structures and unique host-guest chemistry have emerged as promising candidates for conductive materials. However, the tunability of conductivity and porosity in conductive MOFs and their interrelationship still lack a systematic study. Herein, we report the synthesis of a series of 3D copper MOFs (NU-4000 to NU-4003) using a triphenylene-based hexatopic carboxylate linker. By modulating the ratio of mixed solvents, distinct structural topologies and π-π stacking arrangements were achieved, resulting in electrical conductivity ranging from insulators (˂ 10-6 S/cm) to semiconductors (10-8 ~ 102 S/cm). Among them, NU-4003 features continuous π-π stacking and exhibits a conductivity of 1.7 × 10-6 S/cm. To further enhance conductivity, we encapsulated C60, a strong electron acceptor, within the circular channels of NU-4003, resulting in a remarkable conductivity increase to 140 S/cm with approximately 100% pore occupancy. Even at lower C60 loadings that leave 54% of the pore volume remaining accessible, the conductivity remains exceptionally high at 104 S/cm. This represents an eight-order magnitude enhancement and positions NU-4003-C60 as one of the most conductive 3D MOFs reported to date. This work integrates two charge transport pathways (through-space and electron donor and acceptor) into a single MOF host-guest material, achieving a significant enhancement in conductivity. This study demonstrates the potential of combining host-guest chemistry and π-π stacking to design conductive MOFs with permanent porosity maintained, providing a blueprint for the development of next-generation materials for electronic and energy-related applications.more » « lessFree, publicly-accessible full text available June 18, 2026
-
Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method.more » « less
-
Abstract The known effects of thermodynamics and aerosols can well explain the thunderstorm activity over land, but fail over oceans. Here, tracking the full lifecycle of tropical deep convective cloud clusters shows that adding fine aerosols significantly increases the lightning density for a given rainfall amount over both ocean and land. In contrast, adding coarse sea salt (dry radius > 1 μm), known as sea spray, weakens the cloud vigor and lightning by producing fewer but larger cloud drops, which accelerate warm rain at the expense of mixed-phase precipitation. Adding coarse sea spray can reduce the lightning by 90% regardless of fine aerosol loading. These findings reconcile long outstanding questions about the differences between continental and marine thunderstorms, and help to understand lightning and underlying aerosol-cloud-precipitation interaction mechanisms and their climatic effects.more » « less
-
This study describes general methods for the enantioselective syntheses of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates through dirhodium tetracarboxylate-catalysed asymmetric cyclopropanation of vinyl heterocycles with aryl- or heteroaryldiazoacetates. The reactions are highly diastereoselective and high asymmetric induction could be achieved using either ( R )-pantolactone as a chiral auxiliary or chiral dirhodium tetracarboxylate catalysts. For meta - or para -substituted aryl- or heteroaryldiazoacetates the optimum catalyst was Rh 2 ( R-p -Ph-TPCP) 4 . In the case of ortho -substituted aryl- or heteroaryldiazoacetates, the optimum catalyst was Rh 2 ( R -TPPTTL) 4 . For a highly enantioselective reaction with the ortho -substituted substrates, 2-chloropyridine was required as an additive in the presence of either 4 Å molecular sieves or 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Under the optimized conditions, the cyclopropanation could be conducted in the presence of a variety of heterocycles, such as pyridines, pyrazines, quinolines, indoles, oxadiazoles, thiophenes and pyrazoles.more » « less
An official website of the United States government
